
An Intermediate Course in Mathematics and Statistics

Manuel Lleonart-Anguix

Barcelona School of Economics

Master of Data Science for Decision Making

September, 2023



These are the lecture notes for the Brush-Up course: An Intermediate Course

in Mathematics and Statistics of the Master in Data Science for Decision Making

at the Barcelona Graduate School of Economics. Written by Manuel Lleonart-Anguix.

The year 2021.



Contents

I Mathematics 5

L. 1 Introduction to mathematical notation . . . . . . . . . . . . . . . . . . . . . 6

L. 1.1 Sets of numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

L. 1.2 Some symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

L. 1.3 Sums and products . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

L. 2 Matrix Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

L. 2.1 Linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

L. 2.2 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

L. 2.3 Matrices. Types and properties . . . . . . . . . . . . . . . . . . . . . 10

L. 2.4 Determinants and regular matrices . . . . . . . . . . . . . . . . . . . 16

L. 2.5 Eigenvectors and eigenvalues . . . . . . . . . . . . . . . . . . . . . . . 20

L. 2.6 Positive definite matrices . . . . . . . . . . . . . . . . . . . . . . . . . 21

L. 3 Mathematical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

L. 3.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

L. 3.2 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

L. 3.3 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

L. 3.4 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2



An intermediate course in mathematics and statistics Manuel Lleonart Anguix

L. 3.5 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

L. 3.6 Taylor’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

L. 3.7 Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

II Probability 35

L. 4 Some concepts of probability . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

L. 4.1 Laplace formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

L. 4.2 Conditional probability . . . . . . . . . . . . . . . . . . . . . . . . . . 38

L. 4.3 Independent probabilities . . . . . . . . . . . . . . . . . . . . . . . . 39

L. 5 Random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

L. 5.1 Distribution function of a random variable . . . . . . . . . . . . . . . 41

L. 5.2 Discrete variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

L. 5.3 Discrete distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

L. 5.4 Continuous variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

L. 5.5 Continuous distributions . . . . . . . . . . . . . . . . . . . . . . . . . 45

L. 6 Random vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

L. 6.1 Some definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

L. 6.2 Integrals in R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

L. 6.3 Joint discrete distribution . . . . . . . . . . . . . . . . . . . . . . . . 49

L. 6.4 Joint continuous distribution . . . . . . . . . . . . . . . . . . . . . . . 50

L. 6.5 Independence of random vectors . . . . . . . . . . . . . . . . . . . . . 51

L. 6.6 Conditional distributions . . . . . . . . . . . . . . . . . . . . . . . . . 52

3



An intermediate course in mathematics and statistics Manuel Lleonart Anguix

L. 7 Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

L. 7.1 Expectation of a function of a random vector . . . . . . . . . . . . . 54

L. 7.2 Conditional expectation . . . . . . . . . . . . . . . . . . . . . . . . . 55

III Statistics 56

L. 8 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

L. 9 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

L. 9.1 Sample distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

L. 9.2 Sufficient statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

L. 9.3 Likelihood function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

L. 10Interval estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

L. 10.1 How to build an interval . . . . . . . . . . . . . . . . . . . . . . . . . 63

L. 11Hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

L. 11.1 p-value and intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

References 67

4



Part I

Mathematics

5



An intermediate course in mathematics and statistics Manuel Lleonart Anguix

L. 1 Introduction to mathematical notation

This section shows the basic notation and tools we will work on within the course. This

material will not be covered in the lectures and should be read in advance by the students.

L. 1.1 Sets of numbers

A set is a collection of different elements. These collections can be ordered or unordered.

For example, the students of DSDM, the natural numbers, or the mountains of Italy are

examples of sets. We are interested in a particular type of set, the subsets of the real

numbers.

� The numbers that arise of the counting 1, 2, 3, ... are called natural numbers, noted N.

Some mathematicians decide to include 0 or not.

� Adding the negatives, we have the integer numbers, noted as Z1. All the natural

numbers are integers, but the opposite is not true.

� The set of all the numbers that we can express as p
q

with p, q ∈ Z is called the set of

rational numbers, noted Q. Notice that this set also contains the previous two.

� The largest set of numbers that we will see within this brush-up is the set of the real

numbers, R, which are represented by a finite or infinite quantity of decimals. This

set is not equivalent to Q. For example, the number
√

2 is a real number but not

rational.

Before continuing, I will note two considerations about these sets. First, these are not all

the sets of numbers that exist. For example,
√
−5 is not in any of these sets. Second, there

are other classifications of numbers, but this is the most useful for all non-mathematicians.

In your study of the roots of polynomials (for example, in matrix theory), you can

find the previously mentioned roots of negative numbers. Most of the mathematics courses

for non-mathematics bachelors don’t cover these numbers. For a brief introduction to the

world of complex numbers, I recommend the first chapter of (Gamelin, 2000). We can define

operations among the elements of a set. With this, we have different algebraic structures as

groups or fields (that must fulfill some properties).

1For the German word Zahlen.
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L. 1.2 Some symbols

In mathematics, we don’t use the English language for every sentence. Instead, mathemati-

cians use their logic language. Here, I show the symbols that we will use in the course.

To say that one element belongs to a set, we use the operator ∈. For example, x ∈ X
means that the element x belongs to the set X. To indicate the opposite, we use the symbol

6∈.

1 ∈ N, but
√

2 6∈ N

When all the elements of one set, A, belong to another, B, we say that B includes in

A. We write A ⊆ B. If there is an element in A that doesn’t belong to B, we say that B

doesn’t include A. In this case, we write A 6⊆ B.

The symbols ∪ and ∩ denote the union and intersection of two sets, respectively. Let A

and B be two sets. A∪B is the set of all the elements that belong to A or B. A∩B is the

set of all the elements that belong to A and B. Formally, we write:

A ∪B = {x : x ∈ A or x ∈ B}

A ∩B = {x : x ∈ A and x ∈ B}

Finally, we will use logical symbols. The most important are:

� Exists ∃.

� Exists, and it is unique ∃!

� Implies ⇒. Imagine that we have two predicates. For example, A =“I go to the

grocery” and B = “It’s Monday.”

In the sentence, every Monday I go to the grocery, we have that if it’s Monday, I will

go for sure to the grocery. We can write it as

B ⇒ A

However, I might go on other days to the grocery. Therefore, the opposite is not

necessarily correct.
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B ⇐ A

If I am in the grocery, it might be Monday or not. When both predicates are equivalent,

we use ⇐⇒. For example, in the sentence I will eat chocolate if and only if I am ill.

I am ill⇐⇒ I eat chocolate

We can refer to the number of elements a set A has as the cardinality of the set, |A|.
For example, for the set A = {a, b, c}, its number of elements is |A| = 3.

L. 1.3 Sums and products

Sometimes we want to express sums or products that are too long to write. Imagine that

we want to write the sum of the first 100 numbers. Instead of writing

1 + 2 + 3 + 4 + 5 + 6 + ....+ 100

We can write it using the symbol
∑

. We write

100∑
i=1

i = 1 + 2 + 3 + 4 + 5 + 6 + ....+ 100

It reads as the sum from i equal one to i equal to one hundred of i. With the product,

there is something similar. We use
∏

.

100∏
i=1

i = 1 · 2 · 3 · 4 · ... · 100

Notice that in both cases, instead of using i, we can use any expression that depends on

i.
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L. 2 Matrix Algebra

The content that I show in these notes can be found in the appendix of almost every

handbook of intermediate econometrics. For a further extension of matrix properties I

recommend you to check the Matrix Cookbook.

L. 2.1 Linear algebra

Linear algebra begins with the study of linear equations and the seek for their solutions.


a11x1 + a12x2 + ... + a1nxn = b1

a21x1 + a22x2 + ... + a2nxn = b2

...
...

...
. . . =

...

am1x1 + am2x2 + ... + amnxn = bm

(1)

where aij and bi are known and xi are unknowns. You might remember from high school

that the system (1) can be solved using matrices. The existence and the number of solutions

of the system depend both on the independent terms bi and the coefficients of the system

aij. In linear algebra, we work with different objects such as matrices, vectors, and linear

functions.

Linear algebra belongs to the basis of other mathematical fields as statistics and is deeply

related to analysis and geometry. In particular, matrices are fundamental in the study of

data, as they are a useful tool to store, classify and work with data. That is the reason why

we will study matrices in this course.

L. 2.2 Vectors

Vectors are important objects in almost every field of mathematics. In this course, we will

limit to study Rn. A vector in Rn, call it v ∈ Rn is an ordered n-tuple of real numbers

v = (v1, v2, ..., vn), where vi ∈ R for all i = 1, 2, ..., n.

We define two operations in Rn

� Addition of vectors. Let v, w ∈ Rn, we define the addition of vectors as

9
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v + w = (v1 + w1, v2 + w2, ..., vn + wn)

where + is the standard addition in R.

With these two operations, Rn is a space vector.2

� Scalar multiplication. Let α ∈ R, we define the scalar multiplication as

αv = (αv1, αv2, ..., αvn)

L. 2.3 Matrices. Types and properties

Let n and m ∈ N. A matrix is a collection (array) of mn elements organized in rows and

columns. A in equation (2) defines a matrix of m rows and n columns.

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

 (2)

We will say that A is an m × n (n by m) matrix, where aij denotes the element of the

i-th row and the j-th column, also known as entries. We can also say that A is of order

(or size) m× n. We can refer to the i-th row as {aij}mi=1 or as {aij}1≤i≤m. Similarly for the

columns. The set of all the m× n matrices with elements in K3 is defined as Mm×n(K).

Matrix is one of the most useful tools in any data-related work. They help us to present

data and to work with it. We can use matrices to present the results of surveys, important

macroeconomic variables from countries, the nexus between friends in a group, coefficients

in a linear system of equations... Therefore, understanding how to work with matrices will

facilitate our work as data scientists.

Types of matrices

� Square matrix. If in (2) n = m, we say that A is a square matrix.

2We will not go deep in this concept as escapes from our objectives. However, you can think of a space

vector as a set of elements with two operations that meet some conditions.
3Here K refers to a group (or field) of elements. You can think of the natural numbers, N, or the real

numbers, R. But matrices can be defined over any group. However, we will only work with matrices on R.
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� Column matrix. If n = 1, we say that A is a column matrix.

� Row matrix. If m = 1, A is a row matrix.

Notice that column and row matrices correspond to vectors.

� Null matrix. A matrix is null if aij = 0 for all 1 ≤ i ≤ m and 1 ≤ j ≤ m.

0 =


0 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0


� Symmetric matrix. A matrix is symmetric if aij = aji for all 1 ≤ i ≤ m and

1 ≤ j ≤ m.

Notice that a necessary condition for a matrix to be symmetric is that it is a square

matrix.

� Diagonal matrix. A matrix is diagonal if it is a square matrix and aij = 0 whenever

i 6= j. We say that (aii)
n
i=1 is the main diagonal of the matrix A.

Notice that every diagonal matrix is also symmetric.

We define the trace of a matrix as the sum of all the elements in the diagonal.

Formally,

trace(A) =
n∑
i=1

aii

� Identity matrix. The identity matrix I is a square matrix such that aii = 1 and

aij = 0 for i 6= j.

I =


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1


The identity matrix is an example of a diagonal and symmetric matrix.

� Triangular matrix. An upper triangular matrix has all its elements below the diag-

onal equal to zero. A lower triangular matrix has all its elements above the diagonal

equal to zero. A diagonal matrix is both upper triangular and lower triangular.
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When working with data, we will both use square matrices and non-square matrices.

The GDP of three countries in a hundred years can be presented in a matrix of size 3×100.

Two matrices A and B are equal if aij = bij for ever i and j. We can operate with the

elements of Mm×n(R).

Transposition of matrices

Given a matrix A, we define its transpose, and call it A′, as the matrix with entries

a′ji = aij. This means that we replace the rows of A by its columns. Notice that a matrix

A is symmetric if A = A′. If A is a matrix n×m, A′ will be a matrix m× n.

We will study three operations with matrices: addition, scalar product, and product.

However, there are several operations with matrices that we will not cover in this course and

might be useful, as, for instance, the Kroneker product, the Hadamard or the vec operator.

Addition and subtraction of matrices.

As we are used to in the real numbers, we can also add and subtract matrices that are of

the same order. Notice that it is impossible to add to matrices when they have different

sizes. As with the real numbers, we will note the matrix addition with + and the matrix

subtraction with −.

The properties of the matrix addition are the following:

� Neutral element. The null matrix is the neutral element for the addition of matrices.

A+ 0 = A

� Symmetry.

A+B = B + A

� Commutativity. It does not matter the order of the additions.

(A+B) + C = A+ (B + C)

12
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� Opposed element. For every matrix A there exist another element −A such that,

A− A = 0

Exercise 1.

A =

1 3 4

3 2 3

4 3 5

 , B =

5 8 1

0 3 4

0 0 1



1. What is the rank of matrices A and B?

2. Is it possible to add them? Why or why not? If it’s possible, add them. What happens

with A−B?

3. What is the second row of matrix A? And the third column of matrix B?

4. Can you identify matrix A with some of the types described in the previous section?

A′ =

(
1 3 4

3 2 3

)

Answer to the same questions with matrix A′ instead of A.

The product of a matrix and a scalar.

We can multiply a matrix times a real number. Let λ ∈ R. We define the product of the

scalar λ times the matrix A as the matrix which entries are λ times the entries of A.

λA =


λa11 λa12 · · · λa1n

λa21 λa22 · · · λa2n

...
...

. . .
...

λam1 λam2 · · · λamn



Matrix multiplication.

Unlike with the addition of matrices, we can multiply two matrices that do not have the

same rank. If the columns of matrix A coincide with the rows of matrix B, we can multiply

13
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A ·B. However, A ·B might be not well defined. In general, we will omit the sign · and just

note AB to refer to the product. The entry i, j of the matrix AB is equal to

(AB)ij =
n∑
k=1

aikbkj

Here you can see the reason why we need the columns of matrix A to coincide with the

rows of matrix B. The resulting matrix AB will have the same rows of A and the same

columns of B.

Notice that, in general, AB 6= BA. Can you find an example of two matrices such that

AB is different from BA? And an example of two matrices such that AB = BA?

Observe that given the matrix multiplication, we can calculate the multiplication of a

scalar and a matrix as


λ 0 · · · 0

0 λ · · · 0
...

...
. . .

...

0 0 · · · λ

A =


λa11 λa12 · · · λa1n

λa21 λa22 · · · λa2n

...
...

. . .
...

λam1 λam2 · · · λamn


If we only want to multiply the j-th column of a matrix times an scalar, we can do the

following:



1 0 · · · 0 · · · 0

0 1 · · · 0 · · · 0
...

...
...

...
. . .

...

0 0
... λ · · · ...

...
...

...
...

. . .
...

0 0 · · · 0 · · · 1


A =



a11 a12 · · · a1i · · · a1n

a21 a22 · · · 0 · · · a2n

...
...

...
...

. . .
...

λaj1 λaj2
... λaji · · · λajn

...
...

...
...

. . .
...

am1 am2 · · · ami · · · amn


Can you think of how to multiply a row of a matrix by a scalar using matrix notation?

Exercise 2. Solve the following questions about matrix multiplication.

1. Can you multiply AB? And BA? Why? Why not? Do it whenever it’s possible.

2. Now solve the previous question with A′ instead of A.

14



An intermediate course in mathematics and statistics Manuel Lleonart Anguix

In matrix multiplication, the element I works as a neutral, as AI = IA = A. We can

try to find an inverse element for a given matrix A as we did with the addition of matrices.

However, not every matrix has an inverse for the matrix product. This will be discussed in

the following section.

A natural extension to matrix multiplication is the power matrix. We note the n-th

power of matrix A as An. Where

An = A · A · ... · A

We will say that a matrix is idempotent whenever A2 = A. Can you think of an

example of an idempotent matrix?

Matrices as linear transformations

A linear transformation, T , is an application (a function) between two vector spaces such

that:

� T (u+ v) = T (u) + T (v).

� T (λu) = λT (u)

where u, v are vectors and λ is a scalar. Most of the matrix theory can be built up

through linear transformations. We can say that there exists a correspondence one-to-one

between linear transformations and matrices.4 Let u = (u1, u2, u3)′ and

T (u) = (2u3 − u1, u1 + u2 + u3)′ (3)

a linear transformation. Notice that T maps from R3 to R2; it takes a vector of dimension

three and gives a vector of dimension two. We can use the matrix product to represent T .

If we define matrix A as

A =

(
−1 0 2

1 1 1

)
4This means that given a linear transformation there is a matrix that represents it.

15
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we can say that

T (u) = Au

Can you prove it? Get a generic vector u = (u1, u2, u3)′ and multiply it by matrix A.

Then, show that Au gives the same result as T (u) in equation (3).

Hence, matrices not only work as structures of data. They can represent several things.

We have seen two more: linear applications and coefficients of a system, which are highly

related.

L. 2.4 Determinants and regular matrices

For this section, I will assume that every matrix is square unless otherwise is specified.

As we mention in the previous section, is not possible to find an inverse for every matrix.

The subset of the matrices that have an inverse is called the general linear group, and its

elements, the regular matrices. More formally, we say that a matrix A is regular whenever

there exists another matrix B such that

AB = I = BA

We usually note matrix B as A−1, representing the inverse.

One way to study if a matrix is invertible is by looking for its inverse. For example, we

can use the Gauss method. It consists of an augment matrix A with an identity matrix and

applies transformations to A|I until we have an identity in the position of A. The matrix

in the position of the old I is now A−1.

Exercise 3. Can you find the inverses of matrix A and B by the Gauss’ method?

A =

1 0 1

2 2 1

0 1 0

 , B =

1 0 1

1 2 1

0 1 0


Gauss’ method is not the only way to calculate an inverse. We can also use Cramer’s

Rule. However, it is computationally demanding and is only feasible for a matrix of size 3.
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However, there are easier ways to determine when a matrix is regular. To understand

this is important to study linear combinations of vectors.

Linear combinations

Let v1 and v2 be two vectors (you can think of column matrices) of the same size. We say

that v2 is a linear combination of v1 whenever exists a real number α such that

αv1 = v2

Equivalently, given a set of n vectors {v1, v2, ..., vn} we say that vn+1 is a linear combi-

nation of the set if there exist real numbers α1, α2, ..., αn such that

n∑
i=1

αivi = vn+1

This means that we can combine the vectors in the set and multiply them by real numbers

to obtain the last vector. When, in a set of vectors, any vector is a linear combination of

the others, we say that the set is linear independent, or equivalently, that the vectors are

linear independent.

Why is it important to understand the linear combination of vectors in the study of

regular matrices? Because a matrix is regular if and only if none of its columns (or rows) is

a linear combination of the others.

Therefore, to study if a matrix is regular or not we can try to find linear combinations

between its rows or columns. Think in the following matrix

A =

1 0 1

1 2 1

0 1 0


It is easy to see that the first row plus two times the third row equals the second.

Therefore, we don’t have to study if it’s invertible looking for its inverse, we can just say

that its inverse doesn’t exist.

We define the rank of a matrix as the number of rows that are not a linear combination

17
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of the others. Therefore, the maximum rank a square matrix can have is the number of

rows it has. The rank is also defined for non-square matrices. In this case, the rank is the

maximum number of rows or columns that are linearly independent. Notice that a matrix

of size n ×m, with n ≤ m will have a rank smaller or equal to n. If the rank of a square

matrix is maximum, we say that this matrix is invertible or regular, because all its rows are

linearly independent. For a matrix A we note its rank as rank(A).

For the example shown above, it is relatively easy to find the linear combination between

the rows. Nevertheless, there is another method, that in some cases might be easier, to know

when a matrix has or not inverse. This is the study of its determinant.

Determinants

Determinants are only defined for square matrices. Despite almost every student under-

stands what a determinant is, it is not easy to properly define the determinant of a matrix

without going deep into mathematical theory. As this is not the objective of our course, I

will present an intuitive definition of the determinant developed by induction over the size

of the matrix. I will note the determinant of matrix A as |A|.

If a matrix A has size one, we will say that the determinant of the matrix is equal to its

entry

|A| =
∣∣∣(a11

)∣∣∣ = a11

If a matrix A has size two, the determinant, developed by the first column is

|A| =

∣∣∣∣∣
(
a11 a12

a21 a22

)∣∣∣∣∣ = a11 · a22 − a21 · a21

For a matrix of size n, we say that its determinant is equal to

18
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|A| =

∣∣∣∣∣∣∣∣∣∣


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn


∣∣∣∣∣∣∣∣∣∣

= a11 ·

∣∣∣∣∣∣∣
a22 · · · a2n

...
. . .

...

am2 · · · amn


∣∣∣∣∣∣∣− a21

∣∣∣∣∣∣∣
a12 · · · a1n

...
. . .

...

am2 · · · amn


∣∣∣∣∣∣∣+ ...

...+ am1

∣∣∣∣∣∣∣
 a12 · · · a1n

...
. . .

...

am−1,2 · · · am−1,n


∣∣∣∣∣∣∣

First, we get the elements in the first column. The first element is a11. We select the

sub-matrix that removes column one and row one from matrix A and multiply the element

a11 by the determinant of this matrix. Then, we do the same with all the other entries.

To know what sign we should put, we have to consider the position of the element in the

matrix if the number of the column plus the row ad to a pair number, we put a plus. In the

other case, we put a minus.

It is important to understand how to calculate determinants, but for big enough matrices,

programs will do it for us. We can think of the determinant as a number assigned to a matrix

that we can use to know if it is regular (determinant different from zero) or not (determinant

equal to zero). To check the properties of determinants, I strongly recommend you to consult

the Matrix Cookbook (Section 1.2).

We can use the determinant to calculate the rank of a matrix. Let A be a matrix of

size m × n. Assume that n ≤ m. Therefore, we can use the sub-matrices of size n × n

(we call them minors) to calculate the rank. If one of the minors of size A, call them An,

have determinants different from zero the rank of A is n. On the other hand, if |An| = 0

for all the minors of size n, we say that the rank of A is strictly smaller than n. Equally,

we can do the same process for all the minors of size n − 1. If we find a minor of this size

with a determinant different from zero, we say that rank(A) = n − 1. If not, we can say

that rank(A) < n− 1. Proceeding until we find a minor of size s ∈ N which determinant is

different zero, we will find that rank(A) = s.

One of the most important applications of the rank comes from the theorem of Rouché-

Frobenius (also known as Rouché-Capelli). Assume that Ax = b represents a system of

linear equations. Where A is the matrix of coefficients, x a column matrix with the unknowns

and b represents the independent terms.

19
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
a11x1 + a12x2 + ... + a1nxn = b1

a21x1 + a22x2 + ... + a2nxn = b2

...
...

...
. . . =

...

am1x1 + am2x2 + ... + amnxn = bm

Here,

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

 , x =


x1

x2

...

xn

 , b =


b1

b2

...

bn


The theorem of Rouché-Frobenius states that whenever rank(A) = rank(A|b) the system

has at least one solution (compatible system). Moreover, if rank(A) = n, the number

of variables, there is a unique solution (compatible determinate system). If rank(A) =

rank(A|b) < n the system has infinite solutions (compatible indeterminate system). If

rank(A) < rank(A|b) the system has no solution (incompatible system).

If the system is compatible determinate, the solution comes by x = A−1b.

L. 2.5 Eigenvectors and eigenvalues

A lot of problems can be modeled using linear transformations (or matrices). Eigenvectors

and eigenvalues make it easier to understand those transformations. Let A be a n × n

matrix. We say that x is an eigenvector of matrix A iff

Ax = λx (4)

for some number λ. λ is known as the eigenvalue and x is the eigenvector associated

with this eigenvalue. Having coefficients in R is not a sufficient condition for λ to be a real

number. Eigenvalue theory has important implications for the span of sub-vectorial spaces

that I will not cover in this course.

Notice that x is a vector of size n× 1 (a column vector). Here it is interesting to study

the dimension of both terms in equation (4). (Do it!).
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Ax = λx = λIx⇐⇒Ax− λIx = 0⇐⇒(A− λI)x = 0

The previous equality gives us a useful condition to find all the eigenvalues of a matrix.

Using the properties of determinants, we have that

|(A− λI)|x = 0

As this happens for every vector x, we have that

|(A− λI)| = 0⇒ p(λ) = |(A− λI)| (5)

Equation (5) defines the characteristic polynomial of matrix A. Finding the roots of

p(λ) means finding the eigenvalues of A. Eigenvalues are also useful to know the rank of

matrices (the rank is equal to the number of eigenvalues different from zero).5

Exercise 4. Prove that the eigenvalues of matrix A are

λ1 ≈ 6.875, λ2 ≈ 3.526, λ3 ≈ 1.599

and find the eigenvectors associated to it.

A =

 4 2 1

1 3 1

−1 −2 5



L. 2.6 Positive definite matrices

A special type of matrix frequently used in statistics is the positive definite or positive semi-

definite. By definition, A is a positive definite matrix if it’s a square matrix of size n such

that for any vector x ∈ Rn we have

5There is a lot of matrix theory that relates determinants, eigenvalues and ranks, however, we will not

cover it in this course. If you are interested in it check the references.
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x′Ax > 0

except if x = 0. Equivalently, the matrix A is positive semi-definite if for any vector

x ∈ Rn we have

x′Ax ≥ 0

Notice that in general, it’s not straightforward to prove that a matrix is positive definite

by definition. Instead, we can use some theorems or properties to determine if a matrix is

positive definite.6

Two important characterizations of positive definite matrices are the following:

PD by eigenvalues. A matrix A is positive definite if and only if all of its eigenvalues

are positive. A is positive semi-definite if and only if all of its eigenvalues are non-negative.

Sylvester’s criterion. A n×n symmetric (Hermitian) matrix is PD if and only if all the

principal minors are positive.7

6Again, Matrix Cookbook
7The leading principal minors are those which entries coincide with the entries of the matrix.
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L. 3 Mathematical analysis

L. 3.1 Functions

A function f is a mathematical element that maps (goes from) a domain, for example, Rn

to a codomain, for example, Rm. This means that f receives an element of Rn and gives a

unique element in Rm in exchange. In general, both the domain and the codomain are not

limited to any set; we can think of the function that takes the names of mountains and gives

their height. In this course, we will cover only real functions (that map to real numbers) of

a real variable (that map from real numbers).

To be a bit formal, we define note

f : Rn ← Rm

x 7→ f(x)

Here, three important sets must be defined.

� The domain of f , Dom(f), is defined as the subset (selection of elements) of Rn such

that f(x) is well defined. Formally,

Dom(f) = {x ∈ Rn : ∃f(x)}

Note that, in general, Dom(f) 6= Rn. Can you think of an example where Dom(f) ⊂
Rn?

� The image set of f , Im(f), is the subset of all the f(x).

Im(f) = {y ∈ Rm : ∃x ∈ Rn s.t. y = f(x)}

As before, there are cases where Im(f) ⊂ Rm. Can you say one?

� The last set that is interesting to study is the graph.

Gr(f) = Dom(f)× Im(f)
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L. 3.2 Sequences

A sequence is an ordered infinite set {ai}i∈N. In particular, we will work with sequences of

real numbers, so ai ∈ R. You can also think of a function that maps the natural numbers

to the real numbers.

If we can find an expression for the sequence as a function of its position in the sequence,

we define the general term. For example, for the sequence

a1 = 1, a2 = 2, a3 = 3

we can define the general term as an = n. In general, not all the sequences have a general

term. For example, the sequence of the n first numbers of π does not have a general term.

a1 = 3, a2 = 3.1, a3 = 3, 14, a4 = 3, 141, ...

There is a lot of theory on sequences, but we will only study the concept of limit. Given

a sequence, we say that it is convergent if exists a number a such that the distance8 from

an to a becomes smaller when n increases. We will say that the sequence {an}n∈N converges

to a.

L. 3.3 Limits

The concept of limit is used to build up other concepts of analysis as continuity, derivatives,

or integrals. Moreover, we use limits to understand the shape of functions. In particular,

we will study the limit of functions. The concept of the limit of a real function is similar

to the limit of a sequence. However, in this case, we don’t study what happens when n

goes to infinity (as the function doesn’t depend on n in general) but what happens when x

converges to a certain number of the domain.

The formal definition of a limit is the following. Given a function f(x) : R→ R, its limit

in y is L ∈ R if given ε > 0 exists an δε > 0 such that

|x− y| < δ ⇒ |f(x)− L| < ε

8Here, the distance is the absolute value of the difference.
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Colloquially speaking, whenever x is close enough to y, f(x) is close to L. It’s important

to remark that it doesn’t matter how x approaches y. If the limit exists, every approach

(sequence) of x converging to y should give the same result.

Notice that technically we have two different concepts of limit: one defined for functions

and the other for sequences. The first one is necessary to understand several concepts of

calculus whereas the second is used in probability among others.

Not all the limits are necessarily a real number. I will show here different cases that

appear when calculating limits.

� A limit is a real number. For example in

lim
x→1

1

x
= 1

� The limit is ±∞. For example in

lim
x→∞

x =∞

� The limit doesn’t exist. This can happen due to different reasons, but, in general, we

can think that the function converges to a certain point from a side and to another

point from the other side. Here we use the lateral limits. If we study the limit when

x converges to zero of the function

f(x) =

x if x < 0

x2 + 1 if x ≥ 0

we should care about the limit of f(x) = x and the limit of f(x) = x2 when studying

the point x = 0. With this function, we can give the intuition of what a lateral limit is.

The left lateral limit of f(x) in the point 0, noted as lim
x→0−

is the limit of the function

f(x) when x converges to a from the negative numbers (from the left of the real line).

The opposite can be explained for the right lateral limit.

It can also be the case that the function doesn’t have an accumulation point as sin(x).

What happens when x goes to infinity? As sin(x) is a periodic function there is no

limit.

There is a lot of theory in limits that we will not cover. However, you must know that

these three cases exist. We will not enter how to compute a limit.
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L. 3.4 Continuity

We say that a function is continuous at a point x whenever the limit of the function at x

exists and converges to f(x). This can fail in three different ways.

1. The limit exists but the image of the function is a different point. This is called

avoidable discontinuity. For example,

f(x) =


x if x < 0

1 if x = 0

x if x > 0

It is called avoidable because by changing the image to a different point, the function

becomes continuous.

2. The lateral limits are different real numbers. This is called finite jump discontinuity.

f(x) =

x if x < 0

x+ 1 if x ≥ 0

3. Finally, it can be the case that the lateral limits are ±∞. A typical case of this type

of discontinuity is

f(x) =
1

x

L. 3.5 Derivatives

We define the derivative of a real function of real variables in x0 ∈ Dom(f) as

∂f

∂x
(x0) = f ′(x0) = lim

h→0

f(x0 + h)− f(x0)

h
(6)

The intuition behind this definition is the following. If we want to study the variation

tax of the function f(x) between points x1 and x2 we define it as

f(x1)− f(x2)

x1 − x2
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Figure 1: Table of derivatives

the variation in the function divided by the variation in the variable. Is this number is

high is because small variations in x produce high variations in f(x). And the opposite, if

it is small, high variations in x produce small variations in f(x).

Using the concept of limit defined before, we can go infinitesimal (study little variations).

Notice that, for a given h, (6) is equivalent to the definition of variation tax when we take

x2 = x+ h. Therefore, with the limit, we are studying what happens when x2 converges to

x1. Derivatives help us to understand how a function behaves in terms of growth.

Let’s study the derivative of a polynomial of degree 1 when x converges to zero.

lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

a(x+ h) + b− ax− b
h

= lim
h→0

ah

h
= a

Luckily, some wise mathematicians before us developed the proofs for the most used

functions in mathematics. Check Figure 1.

Additionally, using the properties of limits, we can define operations with derivatives.

� Sum

f ′(x) + g′(x) = (f + g)′(x)
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� Product

(f(x)g(x))′ = f ′g(x) + fg′(x)

� Division (for g(x) 6= 0)

(
f(x)

g(x)

)′
=
f ′g(x)− fg′(x)

(g(x))2

Chain rule

However, not every function is as easy as the ones shown in Figure 1. For example, if we

want to differentiate ln
√
x, we cannot use directly the table to find the solution. Instead,

we need to use the chain rule.

Let f(x) and g(x) be two functions. We define h(x) = f(g(x)). Therefore

h′(x0) = f ′(g(x0))g′(x0)

This theorem lets us compute the derivatives of a composition of functions. In this

example, we have the logarithm of the square root of x. So we can say that f(x) = ln(x)

and g(x) =
√

(x). Therefore,

h′(x) =
1√
(x)

1

2

1√
(x)

=
1

2x

Notice that we can also obtain this result using properties of the logarithms (do it!).

Utility of the derivatives

As I said before, derivatives are useful for knowing when functions are decreasing and where

increasing. With this, we can also know about its critical points (maximum and minimums).

For example, imagine that we have this profit function of a firm.

f(q) = −2q2 + 4q + 500, q ≥ 0
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f(q) corresponds to the profits as a function of the quantity produced. The owner wants

to know at which production level he can maximize the profits. Can you say what quantity

should she produce and which will be her profits?

Partial derivatives

The previous definition of derivative only works for functions in which the domain is one-

dimensional. However, in our work as data analysts, we will deal with multidimensional

functions and with their derivatives.

Hence, we need a tool to understand how a function behaves when its domain is in Rn.

The most natural extension is to extend the definition of derivative to a vector. Let v ∈ Rn

and f(x) a function with domain D ⊆ Rn. We define the directional derivative of f(x)

in the direction of v at point x0

Dvf(x0) = lim
h→0

f(x0 + hv)− f(x0)

h

However, this is a concept that we will not cover in this course. Instead, we will study

the partial derivatives that can be understood as a special case of directional derivatives.

We can define the partial derivative of f(c) for the k − th coordinate as

∂f

∂xk
(x0) = lim

h→0

f(x0 + h1k)− f(x0)

h

where 1k is a vector of zeros with a one in the entry k.

Despite I introduce the concept of derivatives with limits, we will not use them to

compute derivatives. This is mainly the reason why we won’t work with limits in this

course. Instead, we will compute the derivatives using the table shown in Figure 1.

Let’s show how to compute the partial derivative of a function with an example.

f(x, y) = x2y3

Using the definition
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lim
h→0

f((x, y) + (h, 0))− f(x, y)

h
= lim

h→0

(x+ h)2y3 − x2y3

h
= lim

h→0

((x+ h)2 − x2)y3

h
=

lim
h→0

(h2 + 2xh)y3

h
= lim

h→0
(h+ 2x)y3 = 2xy3

This example illustrates how to compute the partial derivatives of a function. Treat the

components different from the k-th as a constant and take the derivative with respect to xk

as we did with functions in R.

∂f(x)

∂x
= 2xy3

L. 3.6 Taylor’s theorem

Taylor’s theorem is used to approximate complicated functions by polynomials, that are

much simpler. If c ∈ [a, b] and the n-th derivative exists in interval (a, b) and is continuous

in the closed interval, for every x ∈ (a, b) \ {c}, exists an x1 between x and c such that

f(x) = f(c) +
n−1∑
k=1

f (k)(c)

k!
(x− c)k +

f (n)(x1)

n!
(x− c)n

There exists also a multidimensional version of Taylor’s theorem that I will not mention

here. As an example, I will show how to approximate the function ex by a polynomial of

order 2 at 0.

f(x) ≈ f(0) + f ′(0)(x− 0) +
f ′′(0)(x− 0)2

2

Substituting by the values of ex, we get

ex ≈ 1 + x+
x2

2

Why is this equation an approximation and not an exact identity? Because there is still

needed to add f (3)(x1)
6

where x1 is some unknown number between x and 0. Notice that if

x is far from 0, (x− 0) becomes larger and so does the interval for x1. For this reason, the

approximation is worse in this case.
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L. 3.7 Integrals

Despite there are different types of integrals (Lebesgue, Riemann,...) and the following

statement is not exact, we can say that an integral is the opposite of a derivative.

Let f(x) be a function that maps from a subset of R to R. We say that G(x) is the

integral of f(x) and note

∫
f(x)dx = G(x)

if G′(x) = f(x). Here dx represents the variable with respect to which we are doing the

integral.9

We will distinguish between two types of integrals: indefinite integrals and definite

integrals. As before, let f(x) be a function that maps from a subset of R to R, we say that

F (x) +K is the indefinite integral of f(x) if

∫
f(x)dx = F (x) +K

where K is a constant. Notice that, by the properties of the derivative, the integral is

identified only up to a constant. Using the properties of the derivatives, can you say what

is equal to the following expressions?

�

∫
(f(x) + g(x))dx

�

∫
αf(x)dx

Different ways of solving integrals

Solving integrals is one of the most difficult parts of analysis. Some mathematicians and

engineers might devote years to find ways of solving integrals. Here I show two ways of

solving the easiest ones.

9Technically, this is not the definition of integral but a result named Fundamental Calculus Theorem.

However, as we are studying simplified concepts, this will be our beginning point.
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Immediate integrals These are the integrals that look like the derivative of a function.

So we can just solve them by looking at the table of derivatives. Sometimes, a change of

variables might be needed.

Integration by parts If u(x) and v(x) are two functions of x, we have that

∫
udv = uv −

∫
vdu

Let’s see how to apply this way of solving to the function x sinx. We call u(x) = x and

sinx = dv(x). Therefore,

u(x) = x⇒ du(x) = dx

v(x) = −cos(x)⇒ dv(x) = sin xdx

Therefore, using the formula of the integration by parts,

∫
x sinxdx = −x cosx+

∫
cosxdx = −x cosx+ sinx

You can check that the integral is correct by computing the derivative of the right-hand

side and checking that it works.

Definite integral

Differently from the indefinite integral, the definite integral is a real function between two

extremes of an interval a and b. We write

∫ b

a

f(x)dx

The Barrow’s rule guarantees that, if f(x) is a continuous function in the interval [a, b],

there exists a function, also continuous in [a, b] and derivable in (a, b) such that

∫ b

a

f(x)dx = F (b)− F (a)
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Figure 2: Example of how the Riemann sum works.

Notice that for a given pair a, b, the integral is a real number and not a function as in

the case of the indefinite integral.

It is also possible to calculate the integral when a or b are equal to infinite. Notice that in

general, not every function has a well-defined integral. For example,
∫ 1

0
1
x
dx gives problems.

We say that this integral doesn’t converge or that it doesn’t exist.

Interpretation of the integral

Despite I will be explaining it as an interpretation of what’s an integral, this is the correct

definition of the integral. However I find more difficult to create the relation between

derivatives and integrals from that initial point.

The integral gives the area behind a function. How do we calculate this area? We can

narrow it down by using rectangles. Clearly, if we draw a big rectangle bigger than the

function, its area will be bigger than the function. And if we draw a rectangle smaller than

the function, the area of the function will be bigger than the area of the triangle. We can,
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instead of drawing one triangle, draw 2, 4,... The most rectangles we draw, the most close

the sum of the area of rectangles will be to the area of the function. If both the small and

the big rectangles’ areas converge to the same number, we say that’s the Riemann Integral.
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Probability deals with random phenomena. These, in contrast with deterministic ones,

are those characterized by the impossibility to know with certainty the result of experiments.

For example, if we throw a dice we can say for sure that it will fall until the floor stops it.

Even more, knowing the resistance to the air and the initial speed of the dice, we can know

how much time will it take to reach the floor. However, it’s not so easy to know which will

be the number the die shows when it stops. This second phenomenon is called a random

experiment.

Probability seeks to study via models the behavior of random phenomena. In general,

we will say that the nature of these experiments doesn’t allow us to predict its result.

L. 4 Some concepts of probability

Despite not being able to determine the exact result of an experiment, we might be able to

determine some set where the result should be. This collection with all the possible results

is called sample space, in general, noted as Ω.

We will call random experiment, experiment or trial to the actions that can be repeated

under the same conditions to obtain a result. An outcome of a random experiment will be

noted as ω ∈ Ω. Let’s see some examples

� If flipping a coin is a random experiment, the possible outcomes are head (H) or tails

(T). Hence, the sample space is Ω1 = {H, T}.

� Rolling a die gives as sample space Ω2 = {1, 2, 3, 4, 5, 6}.

As the outcomes of the random experiments are subsets of a bigger set, we can use set

theory with them. For example, we can consider the Cartesian product of Ω1 and Ω2. This

set is the sample space of the experiment that consists of flipping a coin and rolling a die.

Ω1×Ω2 = {(H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6), (T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6)}

We can also talk about the union or the intersection of events as we do in group theory.

Usually, we can talk of the events as subgroups.

Among all the possible outcomes we can differentiate some special cases:
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� Sure outcome.

� Impossible outcome.

� Complementary outcomes. If Ω1 happens, Ω2 cannot happen. Moreover, Ω1∪Ω2 = Ω.

We can note the complementary outcome of A as Ac.

L. 4.1 Laplace formula

Up to this point, we have seen more set theory than probability. If you think about proba-

bility, you might have in mind some function that assigns to each event a number between

0 and 1 (or between 0 and 100, which is equivalent) determining how much likely is each

event to happen. This idea is, in fact, pretty accurate.

The probability is a function defined over a set, Ω, know as the sample space, that has

to meet three conditions. It has to be positive for every element of the sample space, the

probability of Ω must be one (it’s the sure outcome) and

P

(
n⋃
i=1

Ai

)
=

n∑
i=1

P (Ai)

where {Ai}ni=1 is a sequence of disjoint sets.10

The Laplace method is a formula that determines the probability of each event when the

sample space is finite.

Hence, in this case, we can define the probability of an outcome A ∈ Ω as

P (A) =
|A|
|Ω|

which is the division between the favorable cases and the possible causes. Being strict,

this is not a definition of a probability but a way of computing it when |Ω| < ∞. To give

the formal definition of probability, we would need to understand some concepts of algebra

and measure theory, so we will work with the intuitive definition of probability. Notice that

from the definition we can get that

10Formally, we say that with the set Ω we define a σ−algebra, A, that is the set with all the possible

combinations of subsets of Ω that we can make under some conditions. Then Ai ∈ A.
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P (!A) = 1− P (A)

Some properties of the probability.

� The probability of the empty event is zero P (∅) = 0.

� If A1 ∩ A2 = ∅⇒ P (A1 ∪ A2) = P (A) + P (B).

� In general, P (A1 ∪ A2) = P (A1) + P (A2)− P (A1 ∩ A2).

� P (Ac) = 1− P (A).11

� If A ⊂ B, then P (A) ≤ P (B).

L. 4.2 Conditional probability

This is one of the most important concepts of probability and it is highly related with the

role of information; what we know about a certain series of events affects the probability of

another event happening. Let’s use an example,

We have two boxes with balls, one full of red balls and the other full of white balls (let’s

say 50 balls per box). We toss a coin and select one of the two boxes. If the coin shows a

head, we will pick a ball of the red box, otherwise, we will pick a ball from the white box.

What is the probability of picking a red ball? What is the probability of picking

a red ball if we know that the coin was a head? Obviously the event of the coin will

affect to the probability that we assign to a red ball appearing.

Let A and B be two events such that P (B) > 0. We define the probability of A condition

to B as

P (A | B) =
P (A ∩B)

P (B)

Notice that using this formula we can say equivalently that

P (A | B)P (B) = P (A ∩B)

11This formula can be extended to any finite union of events.
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Can you say what will happen with a higher number of events? It’s called the

factorization theorem.

Theorem of Total Probability. The following result is called the theorem of total prob-

ability. Assume we have a set of events A1, ..., An that are disjoint, have P (Ai) > 0 and,

∪Ai = Ω (we call this a partition). We can write the probability of another event B as

P (B) =
n∑
i=1

P (B ∩ Ai) =
n∑
i=1

P (B | Ai)P (Ai)

Why is useful this theorem? It can be used to define surveys about delicate topics.

Imagine that we want to know how much students of the UAB take drugs. Some students

my be insecure about the anonymity of their answers. Therefore, the results that we get

from the survey might not be exact. We can do something else to ensure a higher precision.

Assume we ask seventy students about their drugs consumption (have you ever consumed

drugs: yes or no?), and thirty students if their birthday was in the first six months of the

year. Hence, we get a hundred answers where 25 are Yes and 75 are No. If we assume that

half of the people is born between January and June and half of the people between July

and December, what can we say about the drugs consumption?

P (Y es) = P (Y es | Drugs Question)P (Drugs Question)

+ P (Y es | Birthday Question)P (Birthday Question)

Bayes Theorem. The final of the important theorems coming from the conditional prob-

ability definition is the Bayes theorem. It studies the probability of an event of the partition

given that the event B happened.

P (Ai | B) =
P (Ai ∩B)

P (B)
=

P (B | Ai)P (Ai)∑n
i=1 P (B | Ai)P (Ai)

L. 4.3 Independent probabilities

One important concept we deal with in probability is the independence. We say that

two events are independent if one happening doesn’t affect the probabilities of the other
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happening. For example, if I pick a random number between 1 and 100, the probabilities

of each number to be the selected would be 1
100

, in particular, the probability of 27, P (25).

Assume that you can select 10 numbers, and you select all the numbers between 20 and 29.

Your probability of winning is

P (W ) =
10

100
=

1

10

However, if I announce that the number ends in 5, how do you probabilities change?

Now only 10 numbers can be elected, 5, 15, 25,...,95. Among those you have one number

elected

P (W | Number ends in 5) =
1

10

Therefore, the fact of knowing that the number ends in 5 doesn’t affect your chances of

winning. We say that winning and ending in 5 are two independent events. Formally, if

P (A | B) = P (A)

A and B are two independent events. Notice that using the definition of conditional

probability,

P (A | B) = P (A) =
P (A ∩B)

P (B)
⇒ P (A)P (B) = P (A ∩B)

If we have a bigger set of events, let’s say n events, {A1, A2, ..., An} we can have what

it’s called pair independence, when

P (Ai ∩ Aj) = P (Ai)P (Aj)

If the probability of the intersection of any subset of this set of events is equal to the

product of the events in the subset,
∏n

i=1 P (Ai), we say that the family is mutually inde-

pendent.
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L. 5 Random variables

In general, when we develop our analysis of data, we don’t care about the realizations of

the events, but about the properties of these elements. For example, assume that we pick

at random one individual from the BSE. We are interested in knowing the distribution or

wealth among all the students. Therefore, when we pick a concrete individual, we want to

know her wealth.

To the function that associates a numerical value to a result we call it random variable.

X : Ω→ R

ω 7→ X(ω) = x

We use R because it is a well known space, so it’s easier to work with it.

L. 5.1 Distribution function of a random variable

Definition 1. Given a random variable X we define its distribution function as

FX(x) = P (X ≤ x), ∀x ∈ R

A distribution function meets the following properties:

1. FX(x) ≥ 0 ∀x ∈ R.

2. F (x) is monotonous increasing.

3. Right continuous.12 Can you think of a function that is right continuous but

not left continuous?

4. lim
x→∞

FX(x) = 1

5. lim
x→−∞

FX(x) = 0

12This means that the right limit exists but not necessarily the left one.
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With a function of probability (a distribution function) we can define a concept that is

frequently used in both probability and statistics: the percentile. Given a random variable,

we call the percentile of order p ∈ [0, 1] as the value xp which verifies:

P (X ≤ xp) ≥ p and P (X ≥ xp) ≥ 1− p

So, the percentile 0.5 (or 50) is expected to be in the middle of all the observations that

we make. It’s also called median.

L. 5.2 Discrete variables

A discrete random variable is a random variable that only take discrete values. It’s not

necessarily a discrete variable. For example, our weight, or age are continuous variables.

But we usually study them in kg or years. So I will not say that I am 235.75
24

years old.

We can treat them as discrete because we will define them in a discrete set: one year, two

years,...

We can note D as the possible set of our variables. This set is known as the support.

We are interested in knowing for each element of that set,

P (X = xi), xi ∈ D

If we know this, we can obtain any other type of probability as, P (X ∈ D), where

D ⊆ D. Can you guess P (D)?

For discrete variables, we define the probability function as

fX(x) =

P (X = x), x ∈ D

0, otherwise

Notice that fX(x) meets two conditions.

1. It’s positive in all its domain.

2.
∑

i∈D f(xi)=1.
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Notice that, when the support of variable X is ordered, we can calculate P (X ≤ x) for

any x ∈ D. Equivalently,

FX(x) = P (X ≤ x) = P (x0) + P (x1) + ...+ P (x) =
x∑

xi=x0

fX(xi) (7)

L. 5.3 Discrete distributions

The discrete distribution functions are the distribution functions of the discrete variables.

Here I present three examples. There are more, as the geometric, hyper-geometric distribu-

tions or negative binomials.

Bernouilli

We toss a coin and we want to study if we get a success (heads) or a failure (tails), we pick a

student from our class and check if she has diabetes or not. The question that a Bernouilli

distribution can answer is: yes or no, success or failure. Hence, we have to assign a one if

the event that we want to consider happens and zero otherwise.

Let X be a random variable that is equal to one whenever our coin shows a head, and

zero otherwise. Then

P (X = x) = px(1− p)1−x, for x = 0, 1

Notice that the range of the variable is {0, 1}. Here p = P (X = 1) and 1−p = P (X = 0).

We write

X ∼ Bi(1, p)

Binomial

You might be thinking that the Bernouilli is giving us information that we already know. If

we know p we don’t need to calculate P (X = 1), as we know that it’s equal to p. Binomial

distribution is the Bernouilli but repeated n times. For example, tossing n coins. We write
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X ∼ Bi(n, p)

where n stands for the number of repetitions and p is the Bernouilli parameter. Notice

that the support of X is not 0 or 1 anymore. Now X represents the number of success or

failures that we can make. Therefore is a natural number smaller than n.

We say that X is a binomial random variable with parameters n and p if

P (X = x) =

(
n

x

)
px(1− p)n−x

Notice that the main condition for the repeated Bernouilli to be a Binomial distribution

is that there is no relation between the trials that we do. We say that the realizations of

the random variable must be independent. Can you express P (X = k + 1) as a function of

P (X = k).

Poisson

This distribution is used to study certain cases where a certain event happens related to a

finite time interval. Our random variable must meet two conditions to be a Poisson:

1. The probability of the event happening is proportional to the size of the interval.

2. The probability of the event happening more than once is almost zero.

We say that a random variable X follows a Poisson distribution with parameter λ, and

we note

X ∼ Po(λ)

if the probability function of X is

fX(x) = P (X = x) =
e−λλx

x!
, for x = 0, 1, 2, ...

Can you write an expression for FX(x)? You might want to use equation (7)
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L. 5.4 Continuous variables

In this case, we abandon the discrete set up. So now, our domain for the random variables

won’t be a countable set.

We say that a random variable is continuous if there is a no-negative integrable function,

fX(x), such that its integral is equal to one in the real line.

P (X ∈ (a, b]) = P (a < X ≤ b) =

∫ b

a

fX(x)dx

We can technically substitute the interval (a, b] by any other type of interval. The

function fX(x) is called the density function of probability. Notice that the function itself

is not giving us any information about it’s probability. You must not confuse the discrete

case, where f(x) = P (x), with the continuous case.

Now, we define the distribution function (or probability function) of a random continuous

variable, as

FX(x) =

∫ x

−∞
fX(x)dx

L. 5.5 Continuous distributions

The continuous distribution functions are the distribution functions associated with contin-

uous random variables.

Uniform distribution

We will say that a random variable X follows a uniform distribution with parameters a, b

(or in the interval ([a, b]) if

fX(x) =

 1
b−a , if x ∈ [a, b]

0, otherwise

We note X ∼ Un(a, b). Can you guess FX(x)?
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Normal distribution

We say that X is a random variable following a normal distribution with parameters µ σ2 if

fX(x) =
1

σ
√

2π
e−

1
2(x−µσ )

2

, −∞ < x <∞

We note

X ∼ N(µ, σ2)

Notice that µ ∈ R and σ2 ∈ [0,∞). The function FX(x) is not easy to compute manually,

we usually write it as in the following equation

FX(x) =

∫ x

−∞

1

σ
√

2π
e−

1
2(x−µσ )

2

, −∞ < x <∞

Several years ago people used to have tables with all the probabilities of the normal

(0,1), known as the standard normal. Hence, having some random variable distributed as a

normal µ, σ2, we can say

P (X ≤ x) = P

(
X ′ ≤ x− µ

σ2

)
, with X ′ =

X − µ
σ2

X ′ is distributed as a normal (0,1). Why? Because we use the following property of the

normal distribution: let X ∼ N (µ, σ2). If we define Y = aX + b, then

Y ∼ N (aµ+ b, a2σ2)

The normal distribution has some other useful properties. You might want to check its

Wikipedia page.

Exponential distribution

We say that the random variable X follows an exponential distribution of parameter λ,

X ∼ Exp(λ) for λ > 0, if the density function of the random variable X is
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fX(x) =

0, if x ≤ 0

λe−λx, if x > 0

With an easy integration we can check that

FX(x) =

0, if x ≤ 0

1− e−λx, if x > 0

As you might have noticed, this function is related with the Poisson distribution of

parameter λ. It appears in problems about wait time. This distribution is a special case of

the Gamma distribution (that is not covered in this course).

L. 6 Random vectors

Now that we know how to work with both discrete and continuous variables we must go a

step further. What happens when we see two variables acting together? Imagine that we

can only can observe the distribution of a random variable conditional on another. For this,

we must work with vectors of random variables (or random vectors).

We might observe the position of a certain object in the space. This position is deter-

mined by three dimensions that are, in general, correlated.

L. 6.1 Some definitions

As we did with variables, we must jump from the sample space to the real numbers. However,

in this case we will go to another dimension and instead of studying our variables in R we

will work with Rk.

Let (X, Y ) be a random vector. Therefore we will want to know

P (ax ≤ X ≤ bx, ay ≤ Y ≤ by)

which will obviously depend on the distribution of X, Y and their conditional distri-

bution. In general, we will work with intervals in Rk which are the Cartesian product of
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intervals in R.

The distribution function that describes the probability of the random vector (X, Y ) is

called joint distribution function of X and Y .

FXY (x, y) = P (X ≤ x, Y ≤ y)

We can extend this theory to Rn, however, during the course we are only going to work

in R2. If (X, Y ) is a random vector, then X and Y must be random variables. The opposite

is also true.

L. 6.2 Integrals in R2

This section must be understood as a ten minutes guide to integration in Rn with examples

in R2. You are supposed to complement it at home.

Assume we have a function f : Rn → R that is continuous. We define it’s integral over

the interval (or rectangle) in Rn, A = [a1, b1]× [a2, b2] as

∫
A

f(x1, x2)d(x1, x2) =

∫ b2

a2

∫ b1

a1

f(x1, x2)dx1dx2 (8)

As usual in this course, this is not the exact definition of the integral, but the main

consequence of the Fubini’s theorem. How do we interpret equation (8)? The interpretation

is similar to the one that we did for derivatives in Rn. First we fix all the variables but one,

they will be constants for us. We study the integral with respect to x1 (for example). Then,

we de-fix one of the previous variables, say x2, and study the integral with respect to it,...

What happens if the region where we are studying the integral is not the product of

intervals? We must somehow convert it into an interval A′ = [a1, b1]× [g1(x1), g2(x1)].

∫
A′
f(x1, x2)d(x1, x2) =

∫ b1

a1

∫ g2(x1)

g1(x1)

f(x1, x2)dx2dx1

Let’s see some examples to understand what is going on. First, we will study the integral

of xy in the rectangle R = {(x, y) : 0 < x < 2, 0 < y < 2}.
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∫
A

xy d(x, y) =

∫ 2

0

∫ 2

0

xy dxdy =

∫ 2

0

x2

2
y

]2

0

dy =

∫ 2

0

2ydy = y2
]2

0
= 4

The next example shows a case in which out set of interest is not square. We will study

again the function f(x, y) = xy but in the set B =
{

(x, y) : 0 < x < 2, 0 < y < x
2

}
. We

must express y in a function of x for the set B.

Notice that, if 0 < y < x
2
, we can operate at both sides of the inequality to get 0 < 2y < x.

∫
B

xy d(x, y) =

∫ 1

0

∫ 2

2y

xy dxdy =

∫ 1

0

(
x2y

2

)2

2y

dy =

∫ 1

0

(
22y

2
− 2y3

)
dy = 0.5

We can do the same for y and take as interval
[
0, x

2

]
.

∫
B

xy d(x, y) =

∫ 2

0

∫ x
2

0

xy dydx =

∫ 2

0

(
xy2

2

)x
2

0

dx =

∫ 2

0

x3

8
dx =

1

32x
24 = 0.5

L. 6.3 Joint discrete distribution

For this section we will be considering random vectors that can take values in a countable

set. I will be calling X to the random vector and X1, X2, ...Xn to the different entries of this

vector. We define the probability (joint) function of a random discrete vector in a support

D as

fX(x) =

P (Xi = xi, i = 1, ..., n), if x ∈ D

0, otherwise

As you might imagine, fX(x) ≥ 0 and
∑

x∈D fX(x) = 1.

Marginal probability function

Can we know the probability of one variable if we know the probability of the random

vector? The answer is yes.

49



An intermediate course in mathematics and statistics Manuel Lleonart Anguix

Y\ X 0 1

0 0.2 0.3

1 0.4 0.1

fXi(xi) =
∑

xj∈Dj ,j 6=i

fX(x1, ..., xk)

Let’s see an example with a vector of dimension two.

We know the probabilities in the following table:

First notice that the probabilities of (0, 0), (0, 1), (1, 0) and (1, 1) add to one. Therefore,

P (X = 0) = P (X = 0, Y = 0) + P (X = 0, Y = 1) = 0.6

P (X = 1) = P (X = 1, Y = 0) + P (X = 1, Y = 1) = 0.4

P (Y = 0) = P (X = 0, Y = 0) + P (X = 1, Y = 0) = 0.5

P (Y = 1) = P (X = 0, Y = 1) + P (X = 1, Y = 1) = 0.5

L. 6.4 Joint continuous distribution

The joint continuous distribution is the joint distribution of a continuous random vector.

As you might imagine, this means integrals.

Let X be a continuous random vector, then its probability function (or distribution

function) is defined as

P (X ∈ D) =

∫
D

fX(x1, ..., xn)d(x1, ..., xn)

Notice that D ⊆ Rn. fX(x) is known as the joint density function. Notice that theo-

retically, up until this point, we only added the word joint to every definition that we had

before. The difficulty becomes in the application of this theory.
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Marginal density functions

Here the process is equivalent to the discrete case, but, instead of doing the sum over all

possible values of the variables that we don’t care about, we want to study its integral, as

we are in the continuous case. Hence, given a random continuous vector X, if we want to

study the marginal distribution of the random variable Xi, we must calculate

fXi(xi) =

∫
Rn−1

fX(x)dx−i

If we want to study the joint density of a sub-vector, let’s say Xk = (Xi1, ..., Xik), we

will have

fXk(xk) =

∫
Rn−k

fX(x)dx−k

Here, the notation dx−i means with respect to all the variables but i and x−k with respect

to all the variables but those that are in the vector Xk.

L. 6.5 Independence of random vectors

In the previous section we said that two variables were independent whenever

P (A ∩B) = P (A)P (B)

Similarly, we can give a definition for two independent random vectors. In the discrete

case, the variables that conform a random vector are independent iff

P (X1 = x1, ..., Xn = xn) =
n∏
i=1

P (Xi = xi),∀x1, ..., xn ∈ R

With continuous random variables, we say that the variables that conform a random

vector are independent iff

fX(x1, ..., xn) = fX1(x1)...fXn(xn), ∀x1, ..., xn ∈ R
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Think about a uniform distribution of (x, y) in [0, 1]× [0, 1], fXY (x, y) = 1.

L. 6.6 Conditional distributions

It’s important that we think of a random vector as two (or n) random variables that happen

simultaneously. Therefore, we cannot study the separate distributions, we must use math-

ematical theory to understand how these distributions work. What happens if we want to

know the distribution of a variable knowing something about the other? For example, we

want to know how evolve the wage of individuals that are women, or the hearth rate of

diabetics.

We define the discrete conditional probability function of Y given X = x as

fY |X(y | x) = P (Y = y | X = x) =
P (X = x, Y = y)

P (X = x)

In the future, we will infer how statistics evolve given the data that we observe. And

therefore we want to understand what is the evolution of those statistics.

What happens if the vectors are continuous? We define it in a similar way. The condi-

tional density function of a continuous random variable reads as:

fY |X(y | x) =
fXY (x, y)

fX(x)

L. 7 Expectation

In this chapter we will cover two important concepts in probability: the expectation and

the variance of a random variable.

The expectation of a discrete random variable is defined as

E(X) =
∑
xi∈D

xiP (X = xi)

whenever this expression exists. Can you compute the expectation of a Bernoulli

distribution?
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What happens when the variable is continuous? Remember that in the continuous case

we always substitute the sums by integrals. Therefore,

E(X) =

∫
R
xf(x) dx

Can you find the expectation of an exponential variable?

The expectation is not only defined for random variables, but also for functions of random

variables. The same than we define E(X) we can define E(g(X)) for discrete variables.

E(g(X)) =
∑
i

g(xi)P (X = xi)

And for continuous variables,

E(g(X)) =

∫
R
g(xi)fX(x) dx

Using the properties of integration, can you guess E(aX)? And the E(X + b)?

Three interesting properties of the expectation.

� P (a ≤ X ≤ b) = 1⇒ a ≤ E(X) ≤ b.

� P (g(X) ≤ h(X)) = 1⇒ E(g(X)) ≤ E(h(X)).

� |E(g(X)) ≤ E(|g(X)|).

The mean (or the expectation) is a measure of the location of the random variable. It’s

a simple measure that usually doesn’t give enough information about the random variable.

We might want to study more numbers of measure of our random variables that can give

more information about its behavior.

We call the moment of order k of a random variable X to

µk = E(Xk)
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Similarly, we define the central moment of order k of a random variable to

E((X − E(X))k

In particular, the variance is the central moment of order 2.

Check that E((X −E(X))2) = E(X2)−E(X)2. The third and the fourth central mo-

ments are known as the coefficient of skewness (symmetry) and kurtosis (equi-distribution).

Instead of finding the integral every moment when we want to compute the k-th moment,

we can calculate the moment generating function. We define the moment generating function

of a random variable as

MX(t) = E(etX)

which is a function of t but not X. Studying the n-th derivative of the moment generating

function at t = 0, we can get the n-th moment. Notice that we can characterize a random

variable by its density or distribution functions, by its moments or by its moment generating

functions.

Compute the moment generating function of the exponential distribution.

Check that it makes things easier. I will not cover in this part Markov, Jensen, and Cheby-

shev inequalities, you might want to check them!

L. 7.1 Expectation of a function of a random vector

And then, how we compute the expectation of a random vector? It is exactly as you imagine.

If the random vector is discrete,

E(g(X)) =
∑
x∈DX

g(x)fX(x)

and if it’s continuous

E(g(X)) =

∫
Rn
g(x)fX(x)dx
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In particular, if we substitute g(X) = Xk
1X

k
2 , ..., X

k
n we will get the joint moment of

order k. However, as we are dealing with vectors, we can compute the moment of order

(k1, k2, ..., kn), substituting g(X) = Xk1
1 X

k2
2 , ..., X

kn
n .

Again, the joint central moment of order (k1, k2, ..., kn) is defined as E((X1−E(X))k1 +

E((X2 − E(X))k2 + ...+ E((Xn − E(X))kn .

Can you write the joint moment of order (1, 1)?

In particular, if X1 and X2 are independent variables, we can say that E(X1X2) =

E(X1)E(X2). If two variables are independent,

cov(X1, X2) = E[(X1 − E(X1))(X2 − E(X2))] = 0

Notice that, with random variables, we had the variance of our variable of interest. Now,

if we want to know the variance of the whole vector, we must also take into account the

covariances of the different random variables, we need a matrix.

L. 7.2 Conditional expectation

If (X, Y ) is discrete, we define

E(g(X) | y) =
∑
x∈Dx

g(x)P (X = x | Y = y)

where Dx = {x : (x, y) ∈ D}. For continuous variables, we will have:

E(g(X) | y) =

∫
R
g(x)fX|Y (x | y) dx

One last property that we will see about expectations is the Law of Total expectations

of Law of Iterated expectations. If E(X) exists,

E(X) = E(E(X | Y ))
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L. 8 Basic concepts

Statistics is defined as the compilation, presentation and analysis of data with the objective

of making decisions and solving problems.

We will work with the two main branches of statistics:

� Descriptive statistics, the part that compiles and organizes data.

� Statistical inference, which includes the methods of analysis and decision-making using

the data.

In general we will work with two sets: the sample and the population. The sample is the

part of the population that we observe. With the descriptive statistics we can say things

about the behavior of the sample. With the statistical inference we can make decisions

trying to extrapolate what we observe in the sample to the population.

Population is a term used to describe the set of individuals that we want to study. Notice

that those individuals can be people, animals or bacteria. As we know from probability, the

characteristics associated with the individuals are random variables, which can be:

� Qualitative. Either nominal or ordinal.

� Quantitative. Either discrete or continuous.

We can transform any qualitative variable into a quantitative variable assigning a number

to each of the possible outcomes. The distribution function that defines how the random

variables behave in the population is called distribution function of the population and,

in general, it is unknown. The statistician can know the family to which this distribution

belongs (normal, exponential, bernouilli,...) in the best cases. Out objective will be to

discover the parameters that define the distribution function.

On opposition to the population, we have the sample. The sample is the part of the

population that we can observe, and therefore, measure. We call sample size to the amount

of individuals that we have in our sample. It’s important that our sample is representative

of the population. Here, the way in which we construct our sample is key.

Therefore, if we have a sample of size n, we can say that we are taking n observations

from a random variable X distributed with a certain distribution function that we don’t
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know. If we construct our sample in a correct way, the variables that we observe will

be independent among them and identically distributed (as they are taken from the same

probability distribution). We say that they are iid for obvious reasons. In particular, we

can say that we observe {X1, X2, ..., Xn} independent random variables. And, as they are

independent,

f(x1, ..., xn | θ) =
n∏
i=1

f(xi | θ)

Here θ represents the parameters that we want to infer but we don’t know. Can you

compute the joint density function of n observations iid of a N(µ, σ2)? We call to

this function the joint density function of the sample.

The sample distribution can be manually computed assuming that the variable is discrete

and assigning a probability of 1
n

to each possible value of Xi. Notice that this is also the

relative frequency of each variable. The sample distribution function is therefore

Fn(x) =
|{Xi : Xi ≤ x}|

n

This function reduces the amount of information that the whole sample gives. This is

what we call an statistic. An statistic is a function of the sample (not of the population).

t(X) : t(X1, .., Xn)

As an statistic is a function of a random vector, it will also be a random variable (or

vector). The statistic is a summary of the sample. In principal, it will give less information

than the sample. Let’s see some examples:

� The ordered sample.

� The median or any percentile of order α.

� The range of the sample (the difference between Q3 and Q1).

As we did with probability, now, with the sample, we can compute the sample moments.

We will work principally with the first and the second moment of the sample, which are the

mean and the variance:
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X̄ =

∑n
i=1Xi

n

V (X) =

∑n
i=1(Xi − X̄)2

n

Sometimes we will prefer to work with the quasivariance, because it has better properties.

The quasivariance is defined as

S2(X) =

∑n
i=1(Xi − X̄)2

n− 1

Law of large numbers. If we have n iid variables with finite variance and common

expectation E(X1), then

1

n

n∑
k=1

Xk
p−→ E(X1)

This means that the probability of that the sample mean and the expectation are different

becomes close to zero when we increase the sample size. Using the same logic, we can say

that the sample moments converge to the population moments when we increase the sample

size.

L. 9 Statistics

L. 9.1 Sample distribution

As the statistics that we calculate with our sample depend on the behavior of a random

vector X, we can say that the statistics are also random variables and, therefore, they will

have a probability distribution. We call it the sampling distribution. The question that

naturally appears is, how do we compute the sampling distribution from the sample? There

are three ways.

59



An intermediate course in mathematics and statistics Manuel Lleonart Anguix

The direct way of obtaining the sampling distribution.

If we can observe all the possible variables that the statistic of interest gets we can assign

to them a probability of happening. This probability is the sampling distribution.

Imagine that we have four balls each one with numbers from 1 to 4. We take two balls

with replacement and write its value (X1, X2). What is the sampling distribution of

U = Xmax −Xmin?

First we need to create the table with all the possible outcomes of taking to balls and

calculate U . Then, we can compute the sampling distribution of U .

Analytic way of obtaining the sampling distribution.

We can use probability tricks to save calculations. For example, if we want to know the

distribution of the sum of success in a Bernouilli distribution, we know that that sum

behaves as a Binomial random variable. The following theorem is often used to compute the

sampling distribution of statistics. Let Y = g(X) be our statistic of interest. Therefore, if g

is differentiable, with differential different from zero and monotonic and fX(x) is continuous,

fY (y) =

fX(g−1(y))
∣∣∣∂g−1

∂y

∣∣∣ for y ∈ g({DX})

0 otherwise

Example. Let X be a random variable and

fX(x) =


0 if x < 0

1
2

if 0 ≤ x ≤ 1

1
2x2

if x > 1

If we define Y = 1
X

, what is the distribution function of Y ? Prove that it is

fY (y) =


0 if y < 0

1
2(1/y)2

1
y2

if 0 ≤ y ≤ 1

1
2

1
y2

if y > 1
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L. 9.2 Sufficient statistics

Notice that when I defined a statistic, I said that it mean a reduction of the sample. How-

ever, it is not necessarily a reduction of the information that the sample gives about the

population. The statistic that transform the sample into an ordered set, the ordered sample,

gives exactly the same information as the original sample.

Imagine that we have a sample X = {X1, X2, ..., X10} of an iid sample distributed as

a Be(p). Let x = (0, 1, 0, 1, 1, 0, 1, 0, 1, 1) be the vector of data. Knowing that we have

had t(x) =
∑
x = 6 successes, we are having the same information about p than with the

sample. We say that the sum is a sufficient statistic.

A sufficient statistic must keep all the information over the parameters that X contains

and must be a reduction of X. Notice that every statistic defines a partition of the sample

space. We will say that two statistics are equivalent if both give the same partition of the

sample space. We say that a partition P1 is a reduction of another, P2, if each element from

P1 is the union of elements of P2.

With the information in the previous paragraph we can give a better definition of suffi-

cient statistic. Given X = {X1, ..., Xn} a random sample of a random variable X distributed

as f(x | θ) we say that t(X) is a sufficient statistic for the distribution functions f(x | θ)
if and only if f(x | t(X), θ) doesn’t depend on θ. Can you show that X1 + X2 is a

sufficient statistic for the Bernouilli distribution?

Factorization criteria

An statistic t(X) is a sufficient statistic for the family of distributions f(x | θ) iff

fX(x | θ) = g(t(x), θ)h(x)

with g and h two non negative functions. So, if we can split the sample density function

in two different functions one that depends on the statistic and the parameter and another

that only depends on the sample, we can prove that our statistic is sufficient.

Finally, we say that an statistic is minimal sufficient if any reduction of the partition

defined by t(x) is not sufficient.
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L. 9.3 Likelihood function

Let X ∼ f(x | θ), we first want to create the likelihood function of the parameter θ. We

have information about X, but what we want to know is how the statistic behaves, as the

statistic in general can helps us infer information about the population. Therefore, given a

sample, we can assign a value to each possible θ and score those values by how likely they

are. To do this we need the likelihood function.

Let X = {X1, ..., Xn} a random sample iid of a random variable distributed X ∼ f(x | θ).
We say that the likelihood function of the parameter θ is

l(θ) = fX(x | θ)

Notice that the likelihood function of the parameter depends on the sample that we

observe.

� If X is a discrete random variable,

l(θ) = P (X = x | θ) =
n∏
i=1

P (Xi = xi | θ)

� If X is a continuous random variable,

l(θ) = fX(x | θ) =
n∏
i=1

fXi(xi | θ)

The likelihood principle states that given two samples x and y the likelihood function

obtained with one sample will be proportional to the likelihood function obtained with the

other. We say that the two functions are equivalent. This is why we use to define the

likelihood function as a function that is proportional to fX(x | θ).

Can you compute the likelihood function of a Bernouilli parameter p given

that the sample is {1, 0, 1, 1, 0, 1, 1, 1, 1, 0}? And of the normal distribution N(µ, 1)?

It’s important that we have the maximization theory in our minds when working with

likelihood functions.

An statistic is sufficient if and only if it’s likelihood function depends only on the statistic

and the parameters, but not on the sample. We usually work with the log-likelihood func-

tion, can you see why in the normal example? The final step is to maximize the likelihood

(or log-likelihood) function and obtain the maximum likelihood statistic.
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L. 10 Interval estimation

We know how to find estimators for certain variables. However, how can we estimate the

quality of those parameters? We need to find a certain criteria that allows us to distinguish

between good and bad estimations. It is proposed to add to the point estimate the possibility

of presenting a range of values that give some assurance of finding the value of the parameter

among these values. This range of values is called the confidence interval of the parameter.

Definition 2. Given a random sample X, a confidence region S(X) with α as confidence

level for the parameter θ is a region of the sample space such that

P (θ ∈ S(X)) > 1− α, ∀θ ∈ Ω

We will define this region for the real numbers as a confidence interval. Therefore, we

will look for two boundaries

[lα(X), Lα(X)]

Therefore, the confidence interval can be redefined as a pair lα(X), Lα(X) such that

P (lα(X) > θ > Lα(X)) > 1− α, ∀θ ∈ Ω

L. 10.1 How to build an interval

This procedure is composed by three steps:

1. Find a statistic to be used as pivot, p(X, θ).

2. Select a confidence level, 1− α and with it find the critical values for p, c and C, as a

function of α.

P (c ≤ p(X, θ), C) ≥ 1− α

3. Solve for lα(X) and Lα(X).
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Exercise 5. Let X be a random sample, with X ∼ N (µ, σ2), σ2 known. Calculate a

confidence interval for µ.

� We will consider as a pivot Z = X̄−µ
σ/
√
n

. The distribution of Z is known.

� Given α, we know that

P
(
zα/2 ≤ Z ≤ z1−α/2

)
= 1− α

where zx is the percentile x of a standard normal.

� Solve for µ.

Exercise 6. What happens if σ2 is unknown in the previous exercise? We need to use the

fact that (n−1)S2

σ2 ∼ χ2
n−1 and X̄−µ

σ/
√
n
∼ N (0, 1). In this case, we will use the pivot

X̄ − µ
S/
√
n
∼ tn−1

where S2 is the sample variance. Now we need to repeat the process of the previous

exercise with tn−1,α/2.

Exercise 7. What happens if µ is unknown and we want a confidence interval for sigma2?

The pivot that we must choose is given by (n−1)S2

σ2 ∼ χ2
n−1. Repeat the process of the previous

exercises with χ2
n−1,α/2.

L. 11 Hypothesis testing

Hypothesis testing is the application of interval estimation to the problems that we want

to test (with, of course, innumerable amounts of twists, difficulties, and other stuff). In

this type of problem, we will elaborate a hypothesis and test if it is true or not with some

confidence. A hypothesis, in mathematics, is a statement of the type θ ∈ Θ0. For example,

the mean height of the population is 1.75m and the paper packages that I buy usually have

less than 500 hundred sheets.

To build a contrast, we will need a null hypothesis (the one that we want to reject) and

an alternative hypothesis.

H0 : θ ∈ Θ0, HA : θ 6∈ Θ0
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We assume that the null hypothesis is true unless the opposite is proven.In the simplest

case, using the tools of interval estimation, we will need a confidence interval for our pa-

rameter. If the parameter that we want to test lies inside of the confidence interval we will

not reject the null hypothesis.

With this type of procedure we can commit two different types of errors: not reject

something that is false (type II error), or reject something that is true (type I error). This

two errors are complementary, in the sense that if we decrease the probability of committing

type I error, we will increase the probability of committing type II error.

L. 11.1 p-value and intervals

Despite this topic is long and complex, we will reduce the contrast to those done by p-values.

The p-value is defined as

sup
θ∈Θ0

P (T > t0 | θ)

where T is some statistic measuring the discrepancy between the data and the null

hypothesis with value t0 given our sample. If T is high, H0 is more likely to be false. Intu-

itively, it is the highest probability among all the possible values of θ in the null hypothesis

of having a certain statistic value t. If the p-value is low, we will reject the null hypothesis.

This is easier to see with an example.

Exercise 8. Let X1, . . . , Xn be an iid (independent and identically distributed) random

sample of size n = 100 from a distribution N(µ, σ2 = 2.52). We want to test the hypothesis

H0 : µ ≤ 10. Suppose we have x̄ = 10.8. Calculate the p-value associated with this observed

statistic. Perform the same calculation to test H0 : µ = 10.

Since X̄ is the maximum likelihood estimator of the parameter µ, we choose |X̄−10| as a

measure of discrepancy, considering only those samples where X̄ > 10. Note that if X̄ ≤ 10,

we would have evidence in favor of the hypothesis H0. Therefore, |X̄ − 10| = X̄ − 10.

p-value = sup
µ≤10

P (X̄ − 10 ≥ 10.8− 10|H0 is true) = P (X̄ − 10 ≥ 10.8− 10|X ∼ N(µ = 10, σ2 = 2.52))

=
X̄ − 10

2.5
≥
√

100 · (10.8− 10)

2.5
= 1− Φ(3.2) = 0.0007

Therefore, it is very unlikely that with H0 true (µ ≤ 10), we could obtain a sample of
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size 100 with X̄ = 10.8. However, we have it; the sample has been obtained. Thus, we

have strong evidence against H0. Note that Φ(·) is the cumulative distribution function of

N(0, 1).

Now, let’s consider the second case. Here, we also choose |X̄ − 10| as the discrepancy

statistic. Now, we consider samples where X̄ > 10 and also where X̄ < 10.

p-value = P (|X̄ − 10| ≥ 10.8− 10) = 1− P (|X̄ − 10| ≤ 10.8− 10)

= 1− P (−10.8 + 10 ≤ X̄ − 10 ≤ 10.8− 10) = 0.0014

In this case as well, we have strong evidence against H0.
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